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Abstract

This paper introduces a new definition that generalizes significant fractional integral operators
and applies them to P-convex and quasi-convex stochastic processes, resulting in new Hermite-
Hadamard type inequalities. These inequalities yield specific results for the integral operators
and enhance the understanding of the relationships between convex functions, fractional in-
tegral operators, and stochastic processes. These findings provide a foundation for further re-
search, potentially uncovering new mathematical relationships and applications in related areas.
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1 Introduction and Preliminary

1.1 Introduction

Stochastic processes have recently seen a renewed surge of interest across diverse fields. Key
contributions include Xiu's introduction of generalized polynomial chaos expansions in [15] for
uncertainty quantification, Karatzas and Shreve’s foundational work on stochastic calculus and its
applications in finance [4] and Skowronski's significant extension of convex function properties to
stochastic processes in [14] leading to several novel discoveries. Subsequent research, including
the exploration of convex stochastic processes in [7] and investigations into second-sense stochas-
tic processes in [13] has further advanced our understanding of these processes. A comprehen-
sive overview of fundamental stochastic processes, encompassing stochastic calculus (including
Lévy processes), Markov models and semi-Markov models along with various examples and ap-
plications can be found in [10]. Furthermore, the authors in [8] demonstrate the application of
stochastic processes in the context of random walks, highlighting their significance in addressing
challenges associated with non-normality and boundedness.

Inequalities play a fundamental role across various mathematical disciplines, finding extensive
applications in fields such as physics and engineering. Their evolution, as explored in [2], high-
lights their transformation from isolated instances to a well-established and rigorous area of study.
The Hermite-Hadamard inequality with its significant geometric interpretation and diverse appli-
cations exemplifies this evolution. As a cornerstone of convex analysis, the Hermite-Hadamard in-
equality remains highly significant. Indeed, the paramount importance of mathematical inequal-
ities across a wide array of scientific disciplines cannot be overstated as emphasized in [11].

This paper aims to extend existing fractional integral operators by utilizing a fractional integral
operator within its definition. This novel approach enables us to establish Hermite-Hadamard
type inequalities for stochastic processes. Specifically, we focus on estimating the left-hand side
of these inequalities for stochastic processes whose first derivatives exhibit P-convexity or Quasi-
convexity in absolute value. Through this investigation, we aim to deepen our understanding of
the properties and behavior of stochastic processes.

1.2 Preliminaries

In the context of probability theory, let (£, 7', P) denote a probability space, where £ represents
the sample space, T is the sigma-algebra of measurable sets, and P is the probability measure. If
the sigma-algebra 7 is measurable then the function ®,,, £ — R is considered a random variable.

A function §,,7 x £ — R, within an interval 7 C R, is regarded as a stochastic process if it is
a random variable, for every x € Z, S,(x,-) A function S,,7 x £ — R is considered a stochastic
process within an interval Z C R if it satisfies the following properties;

1. The function S, is a random variable for every x € Z. This means that for each fixed y, the
function S, maps each element w in the sample space £ to a real number, and this mapping
is measurable with respect to the sigma-algebra 7.

2. The stochastic process S, exhibits dependence on both the parameter y and the elements of
the sample space £. This dependence allows for the modeling of random phenomena that
evolve over time or space.
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By satisfying these properties, the function S, effectively captures the randomness and dynamics
inherent in a stochastic process, positioning it as a valuable tool in probability theory and various
fields of study:.

In our previous work [11], we introduced the concepts of mean square continuity (MS-C),
mean-square differentiability (MS-D), and mean-square integrability (MS-I). Readers are encour-
aged to refer to [11] for a detailed discussion of these fundamental concepts and their significance
within the context of this study.

We now proceed to define P-convexity and Quasi-convexity for stochastic processes.
Definition 1.1. [11] A stochastic process S, : T x € — R is defined as:
1. P-convex if for all 7 € [0;1] and p, v € I, the following inequality holds,
Sp(rp+ (L =7)v,) < Splp ) + Sp(vs2)- (1)
2. Quasi-convex if for all T € [0; 1] and p, v € T, we have
Sp(tp+ (1= 7)v,) < Max Sy (p,); Sp(v,)- (2)

Theorem 1.1. [7] Forany (v, 8) € I?, a stochastic process S,,Z x & — R that is both Jensen-convex and
MS-C on Z, satisfies the following,

6 . .
5, (50) <555 [ Sty < HIES0I ®

2 2

In this section we introduce a new integral definitions that will prove useful in establishing the
main theorems.

Definition 1.2. [11] In this section we introduce a new integral definitions that will prove useful in estab-
lishing the main theorems. ¢, [0, 00) — [0, 00) is a function that verifies the conditions below,

[ D <. @
0 T
11§§E5;§T17 for %S%SQ, (%)
Cé(fsrzg), for v <9, (6)
‘Cg)_gg) <Tis A0 fr L<l<o (7)

with 1, Yo, and Y3 are positive and independent of v and 6, where v and ¢ are also positive. Suppose

¢(9)

¢(8)6% is an increasing function for some o > 0, and 57 is a decreasing function for some 3 > 0. In this
case, according to [12], ¢ satisfies (9)—(12).

Based on this, we define the left and right-sided generalized fractional integral operators for a stochastic
process S, as follows,

A 1eSp(X, ) /C p’T,')dT, for x>, (8)

s-1cSp(x, ) / C pT,-)dT, for x <. 9)
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Generalized fractional integrals provide numerous advantages by encompassing various types
of other fractional integrals. These include the Riemann-Liouville fractional integral,conformable
fractional integral, k-Riemann-Liouville fractional integral, and others. Notably, (8) and (9) rep-
resent these integral operators, serving as a framework that encompasses and extends these afore-
mentioned special cases. This framework allows for a more comprehensive understanding and
analysis of fractional integration techniques.

Remark 1.1.

i) For {(7) = 7, the operators (8) and (9) transform in to the Riemann integral as follows,

X
18,00 = [ Sylrdr x>, (10)
vy
s
188, (x) = / Sy(r, )dr, X <6. (1)
X
ii) For {(1) = %, the operators (8) and (9) become the Riemann Liouville fractional integral,
@
@ 1 X a—1
I,Y-%—SP(X) = §(704) ; (X - 7_) Sp(Ta ')dTa X > (12)
I .
I = — —x)*" - . 1
52 Sp(x) £() /X (1 —=x)*""Sp(r,)dr, x <6 (13)
Where (o) = [;° e Xu®~t dx, moreover it is worth noting that when o = 1, the expression
simplifies to the classical integral.
1 o
iii) For((7) = MT?, the operators (8) and (9) transform in to the k-Riemann-Liouville fractional
k
integral,
%S00 = /X(f)k 1S, (r, )dr, x> (14)
vt kCP X) = kf}g(a) , X T p\T) T, X v,
1 4 .
5 = —X)F 1
P800 = ey [ 0TS x<h (1)
where
Tr(a) = / Ta_le_%dT, R(a) > 0, (16)
0
and
Ti(a) = kT 1¢ (%) . R(a) >0k >0, (17)

are given by Mubeen and Habibullah [9].

iv) For ((1) = 7(x — 7)* 1, we obtain the conformable fractional operators from the operator (13),

X X
I$SP(X) = / TailSP(Ta ')dTa T<X= / SP(T7 ')daTa X > (18)
Y ol

is given by Khalil and Horani [5].
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v) For ((7) = L exp (— “;a) 7), the exponetial fractional integral operators appear from the operators
a
(8) and (9), for o € (0,1),

735,000 = 5 [ e (<0500 syman < (19)

)=t [oo(- e v) s x<a @)

are defined by Kirane and Torebek [1].

>

2 Midpoint Inequalities for Generalized Fractional Integrals for Stochastic
Process

During the course of the study, we establish the following,
X _
U(x) = / @ =2)u) ; ) 4y < o, (21)
0

and

! —Y)u
X) = / 7«(5 5 7) )du < 0. (22)

See [1].
Lemma 2.1. Consider an MS-D stochastic process S, : T x € — R, and ~y and § are elements of 7°, with
v <.

Suppose S,, is an MS-I on the interval [y, 8]. In this case, the following equality for generalized fractional
integrals holds,

5 S—7
S (150 ) = s L S0 4o 16800)] = g > Tk (23)
where
J1= /05 U(7)Sp (10 + (1 = 1)y, -)dr, g2= [ (~U(r)S(ry+ (1 - 7)6, )dr

1
J3= /l (=@(7))S, (16 + (1 = 7)y,-)dr, J4 =

Proof. By calculating J1, 72,73 and J4, we get,

(- v)) Y40 1 %q(éw)r) e

1 56(5 7)u v+5

(57

J2=

/—\

Qq
\Q
\
Iy
Qq
\2
Q.
N
%
/N /N
2
o4+ |+
(o%)
\_/\_/\_/
O«)
\Q
o
Oq
Q
cr
(=%
+
_
\
2
2
\i
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)Sp<~y+a )/ (@ =),

K ’v(/ sy w8+ (1= dT+/ Mspmm—f)a,.)w)

5781’( 2

y+0 > 1

5 —~ |:7+ICSP(5ﬂ ) o LeSp(v, )]

We deduce the result by dividing by 2¥(1) and multiplying by (§ — ).

Remark 2.1.

228

e For {(1) =7, (21) becomes,

(55 [

:w—yxéﬂ(g@6+u—wa%ﬂ%hv+a—rm0)k

A similar result for functions can be found in [6].

e For((r) = @ in (21) we get,
5 5
LS R S -
gl
where
I, = /E TS, (16 4+ (1 = 7),-)dr, I, = ’
0

1
@:/(#-U%vwwuwwgm, 7, =

{e%

2

referred to [6].

e For (1) =

5 (50) - e [ (6-nt =) seoar = 2 S

we have,

kik( )’

[\
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e For ¢(1) = 7(6 — 7)*~ ! with S, being symmetric to , the result becomes,

(v +9)
2

v+ R - _ o6 ¢
3p< 2 ")‘2<6a—va>/f R T PO

where
Tr= 2 [7 6 = 15— (6 =) Sy (e84 (L= 7
0
g2= 2 [T @15 6=+ (1= 13
0
1 1
3= [ (6= @G- = 1) S8 + (1= 1)y, )
Fa= 1 [ (5= 6= r =) S+ (L= 15, ),
e For (1) = %exp (— ( ;a) T) , where o € [0, 1], the following is true,

a—1

S (1) +50) — S oty

[7+Icsp(5, ) +s- ICSp(% )} = (5—’7)(04—1)) Z Tk,

where A = E(é — ) and
o

|

Jl= /0 *(exp(Ar) — 1)S,(r6 + (1 — 1), )dr,

-

72— /j (1 — exp(Ar))S,(ry + (1 — )3, )dr,

J3= / (exp(AT) — exp(A))S, (16 + (1 — 7)v,-)dr,

1

2

1
J4= A (exp(A) — exp(AT))S, (v + (1 = 7)d,-)dr.

2

In the next two theorems, we expand the estimations concerning the left-hand side of a Hermite-
Hadamard type inequality for stochastic processes, specifically those with first derivative absolute
values exhibiting P-convexity and Quasi-convexity.

Theorem 2.1. Consider an MS-D stochastic process Sy, : T x €& — R, and ~ and § are elements of Z°, with
v < 6. If |8 | is P-convex on the interval [y, 8], the following inequality for generalized fractional integrals
holds,

Sp (7—2’_57 ) - %(1) [7+ICSP(5» ) +5- ICSP(% )}’

(24)

< (fpzl’;) (1857, )| + 1856, )]] (/02|\IJ(7-)|dT—|—/é |<I>(7')d7'>.
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Proof. By using Lemma 2.1 we get,

Sp(””),-) 55 b IS8 4 1,00

2 20(1)
6 AN ) e b e o
20 (1) / 876+1 )y, -)d +/O( U ( ))3p(w+(1 )8,-)d
C=D| [ oimrs (o5 4 (1 — o de o [ (NS (o o
+2\1/(1) /O ®(7)S, (16 + (1 —7)7,-)d +/0 (—®(r)S, (77 + (1= 7)5,-)d
< Saed [ Qw+ 1-wmar (15,00] + Is36.0))
+ Saa [ (=a@iaar (150, + 15,06,
Using the P-convexity of \81’7| . .

Remark 2.2.

e For ((7) = 7, we obtain a result akin to that discovered in [6],

G2 sl +Isy@nl] [F16=riar+ [ 1@ =)~ s

0
1
TdT+/ (1 —T)dT)

N|=

<

< 0 =[ISp01 )] + 15,6, | (/
<0 1 ") (IS5 + [83(6,)] )-
o)

S, (735 ) - = / 5 (6 =7+ (r =) 1) Sy(r,)dr

SO ’y)(‘S HS/ |></057'0‘d7'—|—[2(1—70‘)d7>

2

= 2((6a+71)) <2a1—1 +la- 1)) ["ng(%'” * |S{’(5")’]'

e For((r) = we get a reseult similar to that found in [3],

o

T

k{k(a)’

S, (ﬁ‘i ) TORIE: /6 (6=nF 4+ (r =) F)Sy(r. )dr

< @=D(I80r.] + IS5(8.)] (/ ‘T’“’d7+/ ’1_7k1d7>
<G| 1800+ 185 |]<2+ 1+1<21>)'

e For((r) = we have,
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Corollary 2.1. Assuming that Theorem 2.1 is verified, with {(7) = 7(6 — 7)*~! and S, being symetric
to 9} ; 9) , the result becomes,

’7+6 _ o ° a—1 .
Sp( 5 ) 5o —’Ya[, TSy (T, - )dr
1

+6  (y+94)~tt
< a+1 5a+1 — (Y 5 gl 4 . 15 . .
< Gy [0 ) 2 - e T S [y + 18566
(25)
Proof. For ((7) = 7(6 — 7)*~! we have,
s (1E0 - _@ /5 1S (7, )d
P\ 2 6“—7“7T AT AT
5— 3 !
< SO s 00] + [y [ wiar + [ eilar ).
) — ,ya 0 %
We compute the integrals as follows,
3 17 .
Jrvelar == [6 -5 (6= rilar
0 @ Jo
1 0 1 a (y+0)att v+ 5]
- - 5% — g% ds = —— 5a+1 _ 5@
aw—vxlw' #%lds <u5—w[a+1 T 20 a1 2 |
and
1 1
[ @lar == [ 15 6= re =y ar
_ 1 /”’2*'58& *|ds = 1 @ ol (7+6)a+1 _ oY t+90
S a(0-9) J, K S ald—q) la+1 20t (@ + 1) 2 |
Thus, we obtain the result. O

Corollary 2.2. In the context of Theorem 2.1, for {(T) = % exp <—(1_a)7>, « € [0, 1] the result is,
Sy 5,0, = 5 o [ TS0 4 TSyl

0—=7) 1 1 A / '

= a2l — oxp(A)) (2(1 —exp(A)) + 7 (1 — 2exp (2) + exp(A))) x [0 + 18306, ]

where A = QT_l(d — 7).

231



O. Rholam et al. Malaysian J. Math. Sci. 19(1): 223-239(2025) 223 - 239

Proof. By taking ((7) = % exp (—MT>, a € [0,1], we get,

«

S0 50,0 = g s TS0 4 1Syl
1 —exp(A (/ lexp(A7) — 1|dr +/ lexp(A) — eXp(.AT)|dT> X “8}’7(% .)‘ + ’3}’7((5’ )”
= 1—exp ( (1 —exp(A ;(IZexp(;l>+exp(A)>> X [|Si’)(%.)|+’31’?(5’.)|]

O

Theorem 2.2. Consider an MS-D stochastic process S, : T x €& — R, and ~ and § are elements of Z°,

with v < ! | is quasi-convex on the interval [y, 6, the following inequality for generalized fractional
integrals holds,
y+6 ) 1
Sp < 9 ) 2\11(1) |;Y+ICSI)(63 ) +s5- IgSp("y, ):| ‘
(6—7) } 1 (26)

< 4 . (5. .

< G Max {15, 5366/} (/ v+ [, jo) dT>
Proof. By using Lemma 2.1 and by using the Quasi-convexity of |5} | we get the result. O
Remark 2.3.

e For ((7) = 7, we obtain a result comparable to that discovered in [6],

Sp<7;6">_(5iv) /jSP(T

(6_'7) /
< = Max{ ’Sp(% I,

< (57 Max { [} (7,°)

‘ / (6 — 77’|dT+/|5 Y)(1 —7)|dt

0

(/ Tdt —|— 1 — T)dT)
(67')‘ }

4
e For((r) = %, we get a result similar to the one found in [3],
v+6 a ° o e
1 2
§(6'y)MaX{|Sp(’y,~)|,|8p(5,~)|}(/O 7 d¢+/é (1-7 )dr)
(6_'7) 1 !
< 2t D) <2a_1 +(a— 1)) Max { [8(7,1)] [ 556, }-
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e For ((1) = , we have,

kfk( )

Sy <(7 ; 9, ) (60‘ ez /6 (0=7E 4 (r =) E 1) Sy (r, Y

< (5= 7 Max { [} (7,°)

0
) 1 1 1
150} (5+ 351 (% 1))

Corollary 2.3. Assuming Theorem 2.2 is verified for ((1) = 7(6 — 7)°~! and S, being symmetric to
(v +9)
2

< (35— 7) Max { 5} (7,°)

, we get,

ry—"_(s _ « ° a—1
Sp (2 , ) 5Q’Y°‘/y TS, (T, )dT

1 , ,
< G M 15001 15,61}

X |:(,ya+1 +6a+1)

e say Y FO (v )]
O +0%) 5=+ e D

a+1

Proof. For ((7) = 7(6 — 7)*~!, we obtain,

7+5 o « o a—1
Sp< 5 ,) 6“—7“/7 TS, (T, )dT
(6 —7)
< 5o o Max{b}',(% 1S, (/ | (T |d7'+/ |D(T |d7'>.

By computing two integrals, we get,

[ = 2 [T 15— 5= @ =y
[ w@lar =3 [ 5= 6= yri = e

which gives us the result. O

and

Corollary 2.4. Under the assumption of Theorem 2.2 with (1) = T exp <— (1=a) 7'> a € [0, 1], then
e a

we have,

Sy 8,0, = g s [ TS0 4 TSy,

2(1 — exp(A)) L+
16| ) (;(1 ~ exp(A)) + (1 —2exp (;‘) +eXp(.A)>) 7

5
i Max{ ’SZ’,(’y, )

= a(l—ep(A)

where A = ((5 V).
(0%
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Proof. We take ((7) = gexp (— (1 ;a) 7'), a € [0, 1], we have,

_ m L+I<Sp((5, )+ 1eSp(7s )} ‘

a(l - exp)(A)) Max{ SR ARSI } </ lexp(AT) — 1|dT +/ lexp(A) — eXp(AT)dT>
MM&X“ )|, |80, }}( (1 — exp( ))+;<126XP(§>+QXP(A)>>'

O

Theorem 2.3. Consider an MS-D stochastic process S, : T x £ = R, and ~y and 6 are elements of Z°, with
v < 0. Assuming that |Sz’,|a is P- convex on [y, 8], for some o > 1, then the following inequality holds,

SP (7 ;_ 57 ) - 2\111(1) [}Y+ICSP(5ﬂ ) +s- ICSP(’% )} ’

4 e ; . @)
_ )[(/0 |\P(T)|Pd7> —k(/1 |<I>(T)|Pd7> ]<|Sz/z(5v')|g+|S;/;(%')\U)0,

1 1
where — + — = 1.
p o

Proof. With Lemma 2.1, we get,

5 (550) = g L IS0 5 168,000

(6—7)
20(1)

1
2

<

\\I/ \‘8’75—1—(1—7')% dT+/|— |’S’T’y+(1—7’ |dT]

(6 —7)

/\— |S’ (16 + (1 —7)7,- ‘dT+/|(I) ’S’ (T7 + (1 — 1), ’dT].

And by applying the Hélder inequality, we obtain,

S, <7 "2|' 57 > - 2\111(1) [fwlcsp(é, ) A5 LeSp(ys )]l

</02|\11(T)|”d7)” (/0 S0 —T)%->|U> |
! </03|W(T)|pd7>p (/02 |Sp(ry+ (1 —7)5,.)|0>U]
</;|<I>(r)lpcl7>'i </0 |8 (70 + (1 —T)%.),”>
¥ </;|<1>(T>Pd7>¢ </0 |s,;(m+<1_T)57.)y>i],

< 0=
= 2u(1

1
e
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Finally by considering the P-convexity of ‘SZ’)}U we get,

5 (157 ) - g 590 o 18500

[</Oé|\ll(7)|ﬂdr>p n <[|q>(7)|pdr> ] (’SZ,)((;’.)IJJF s (%_)’a)

al=

(6 —")
= 9()

U(1

Remark 2.4.

1
I

e For ((T) = T, we get

s (50t [ s

A=) (1) 15,0000 +1556.0

< L
(p+1)r \2°7

)
/ (6= 7)1+ (7 —7)2 ) Sy, )dr

v+ @
Sp( 2 ) 200 — )~

o () + G (5 9) )

ap + 1)2ar+1

Q=

x| 185 ()" + 185 67|

e For ((1) = ﬁ;), we obtain

v+90 e 0 oy 2y
5, (50) ~ g | @= T =) E Y Syt
2(577) / g / a

= T ., 1 |Sp(7")| +|‘S:v(§")|
Ernre |

Corollary 2.5. Under the assumption of Theorem 2.3 with (1) = 7(§ — 7)*~ " and S, is a symmetric to

1
o

(v +9) , then we have,

,-)/_|_5 _ o ’ a—1
S, <2 , ) 5o e [/ TS, (T, )dr
((5 - '7)% / o / o % ap Y + 6 (’V + 5)ap+l %
< . . _ ap+1 , N T F)
ap A+ aptr + w !
apt1 2 )7 200t (ap+1)| |
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Proof. We calculate the following integrals, using the inequality A > B > 0and (A—-B)7 < A7—-B°
foro > 1.

p - 2 a _ _ (e a
[eera= L [ g
1 6
< ap _ .ap
_mp(é—v)/w;a(& b
< ! ap saptl _ ('Y+6)ap+1
T ay(0—7) [\ap+1 200t ap+1) /|’
and
1
P _ a _ _alP
IS dT‘w/ 5= (=)l =" dr
M
< P—~%) ds
ayP (6 — 7)/7 (& ")
y+s8
— ap ap+1 ?
ay?( 5 v) | \ap+ 1° N
5 + 5 ap+1 ,Yap+1
7047”5 7) [(2“”“ (ap+1) apH)]
which gives us the result. O

Theorem 2.4. Consider an MS-D stochastic process S, : T x € — R, and ~ and 6 are elements of Z°, with
v < 6. If we assume that |S{O|g is Quasi- convex on |7y, 0], for some o > 1, then the following inequality
holds,

20) [(/jﬂr)pﬁ)" N ([@(7)|pdr> ] Max{ 18,3, )], 846, )| }

(28)

1 1
where — + — = 1.
p o

Proof. We obtain the result by considering the Holder inequality and the quasi-convexity of |S)| 7
on Lemma 2.1.

Remark 2.5.

e For ((7) =7, we get,

< () el i)
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e}

e For ((1) = gzoé),we have,
%(7§5f>mgfwaléﬁé’”al+“vfl)%“*WT
s(awhhx{wgmqhwuaw}<(&w+}pwH)p
Grmalem))
e For ((T) 3 ;j ),we obtain,
S (7;6’) "G /j (6=nF s (=B )8 )ar
«— 2020 ve{ fsyr. )] 561 -

(92 +1)7 (2%+1)”

Corollary 2.6. Assuming Theorem 2.4 is satisfied for (1) = 7(6 — 1)~ and S, being symmetric to

M, we obtain,

YO o g
Sp( 5 ,) 50‘—’70‘[,7- Sp(T,-)dr

— (0 — @ ap+1 2

1
+ ap Y +0 qoPtL (y+ o)t e
ap+1 2 20t (ap + 1) '

200+ (ap 4 1)

<(57))Max{|51/7(%.)|7|5;(5,.)|}<K ap M) 5ap+1+w 1

Proof. We calculate the following integrals, using the inequality A > B > 0and (A-B)7 < A7—-B°

foro > 1.
J e A
1O b
Soryﬁ(é o /i(éap—s”)ds
- K ap+1_7+5)+ (v + 8)ortt
— av?( 5 ) 2 2ert(qp + 1)
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and
/|<1> |Pdr——/| I =yl dr
m
< — %) ds
047”(5 7) /7 = K
m
- ap gertl ’
ay?( 5 v) | \ap+ 1° N
5 + 5 ap+1 ,Yap+1
7047”5 7) [(2“”“ (ap+1) apH)]'
Thus, the result is complete. O

3 Conclusion

In this paper, a study was presented on the estimation of the left-hand side of a Hermite-
Hadamard type inequality for stochastic processes. Specifically, the focus was on stochastic pro-
cesses whose first derivatives had P-convex and quasi-convex absolute values. To achieve this, a
generalized fractional integral was utilized. The approach allowed for the derivation of new and
significant results concerning well-known fractional integral operators. The outcomes of this re-
search provide valuable insights and could serve as a foundation for further investigations in this
field. By examining and expanding upon these findings, researchers could uncover novel math-
ematical relationships and explore their applications in related areas. These contributions aim
to enhance the understanding of the connections between convex functions, fractional integral
operators, and stochastic processes.
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